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1. Phys. A Math. Gen. 24 (1991) 5683-5701. Rinted in the UK 

On the representations of GL,,J2), GLp,q(lIl) and 
non-commutative spaces 

R Chakrabartit and R Jagannathant 
t Department of Theoretical Physics, University of Madras, Guindy Campus. Madras 
600025, India 
$The Institute of Mathematical Sciences, CITCampur, Tharamani, Madras 6001 13, India 

Received 19 March 1991, in final form 6 August 1991 

Abstrad. Explicit realizations a f t h e  quantum groups GL,, (2)  and G L , , ( I  I I )  correspond- 
ing to unimodular value: 0: the defamation parameters p and q are given in terms of the 
canoncially conjugate (X, P) operators, using the Heisenberg-Weyl commutation relations. 
Matrix representations are also discussed. Same observations are made on similar 
realizations of the non-commutative coordinate spaces on which the quantum groups act 
as endomorphisms. 

1. Introduction 

The mathematical structure of quantum groups (Drinfeld 1985, Jimbo 1986) has its 
origin in the study of quantum inverse scattering methods (Sklyanin et al1979, Faddeev 
1982) where the crux of the integrability lies in the quantum Yang-Baxter equation 
(Yang 1967, Baxter 1982). The quantum groups underlie the spectral parameter- 
independent limit of the trigonometric/hyperbolic solutions of the Yang-Baxter 
equation, whereas the classical Lie algebras correspond to its rational solutions. A 
quantum group and its Lie algebra may be viewed as deformations-generally depend- 
ing on one or more parameters-of a classical Lie group and its universal enveloping 
algebra, with a comultiplication rule that preserves the defining commutation relations. 
The comultiplication is a generalization ofthe familiar tensor product of representations 
of classical groups. The close kinship between the Yang-Baxter algebras and the 
various physical and mathematical theories such as the analysis of braid groups and 
link invariants (Kauffman 1990, Kauffman and Saleur 1990) and the rational conformal 
field theory (Alvarez-Gaud et al 1990) establishes their deep connection with the 
representations of the quantum algebras. The notion of non-commutative differential 
geometry (Connes 1985) underlies the quantum group structure and the related ideas 
are found to have interesting applications in string field and gauge theories (Witten 
1986, 1990). 

In the viewpoint proposed by Manin (1988, 1989) a quantum group is identified 
with endomorphisms acting on a non-commutative vector space, the Manin plane, the 
coordinates of which obey sets of bilinear product relations. The sufficient condition 
for the associativity of the algebra turns out to be the Yang-Baxter equation, the 
analogue of the Jacobi identity for the quantum groups. In the defining matrix rep- 
resentations of the endomorphisms the commutation relations for the non-commutative 
space coordinates generate the commutation relations to be satisfied by the elements 
of the quantum matrix. For the quantum group GL,(n), characterized by the standard 
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single deformation (quantization) parameter q, the minimal set of commutation rela- 
tions imposed by Manin's construction (Corrigan er a/ 1990) may he reduced (Floratos 
1989, Weyers 1990) to the Heisenherg-Weyl form for unimodular values of q. Exploiting 
this property, explicit realization of the elements of the quantum group matricesmay 
he obtained-in ferm: of mutually comAmuting pairs of canonically conjugate (X, P )  
operators (.Xi, SILT., Pk]=iSik, [X,, X , ] = [ q ,  Pk]=O) and matrices (Floratos 1989, 
Weyers 1990, Chakrabarti and Jagannathan 1991a). 

Coiijideriiig i k  giiaiiiiim group cxi-aciiiig on a pair of disiinci quadraiic spaces, 
Demidov et a/  (1990) (see also Sudbery 1990, Takeuchi 1990, Reshetikhin 1990, Kulish 
1990, Schirrmacher et al 1991) generalized the Manin construction to obtain the 
non-standard deformation GL,,,(n) where p and q are two continuous parameters 
and E is a finite set of *1 consistent with the functional independence of the generators 
in the sense of the Poincare-Birkhoff-Witt theorem. In this case the bilinear commuta- 

R-matrix satisfying the Yang-Baxter equation. For GL,,(2) all the entries of E may 
be chosen as 1. Developing the differential calculus on GL,,(2), leading to its Lie 
algebra, Schirrmacher et al(l991) emphasize that the significance of the two-parameter 
deformation comes to bear in the CO-multiplication rule and the structure of the 
R-matrix, which truly depends on both parameters. The present authors recently 
obtained a n  oscillator realization of the corresponding quantum algebra (Chakrabarti 
and Jagannathan 1991b). The importance of the two-parameter quantum groups and 
their Lie algebras may he apparent in several contexts, as in the Yang-Baxterization 
procedure (Jones 1989, Ge  and Xue 1991) to obtain the spectral parameter-dependent 
solutions of the Yang-Baxter equation, non-standard quantum statistics (Greenberg 
1991) and various heuristic phenomenological applications such as in nuclear and 

by Schirrmacher et a/  (1991) the existence of a two-parameter deformation implies an 
infinite number of one-parameter deformations (in the standard case p = 4). and it is 
interesting to study the consequence of this fact from the point of view of model 
building in physics (Chakrabarti and Jagannathan 1991~).  

R Chakrabarti and R Jagannathan 
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mo!ecn!ar physics (Iwao 1990, Raychev e! n! !990, Chang e! n! !99!). As p!?intcd o11t 

The purpose of the present paper is three-fold. 
(i) We notice that the bilinear product relations of GL,,(2) may also he recast in 

the form 

mAmB =pNAnqN'AmmBmA (1.1) 

where m, ( A  = 1-4) are the appropriate Heisenberg-Weyl variables. For unimodular 
values of p and q (we restrict ourselvesto this case hereafter) we use the commutation 
relations (1.1) to obtain the realizations of the elements of the GL, , (2)  matrix in terms 
of canonically conjugate (2, p) operators and matrices. The differential calculus on 
the quantum plane (Wess and Zumino 1990) is covariant under the quantum group 
and the application of the formalism of differential calculus on  the non-commutative 
space of a quantum group (Woronowicz 1987) leads to the notion of quantization of 
the corresponding Lie algebra. For a concrete realization of the differential calculus 
in the space of a 'continuous' set of non-commuting variables, the given set of variables 
may be expressed as functions of a set of continuous numerical parameters. Floratos 
(1990) addressed this problem in the case of the Manin plane Ai" with the coordinates 
(xi I i = 1,2, .  . . , n) satisfying the commutation relations (X,XI = q-'xixj, i < j ;  i, j = 
1,2, .  . . , n) and gave a solution for unitary coordin!tes (xTxj = 1, 141 = 1) in terms of 
the quantum mechanical phase space operators (X, P) using the Heisenberg-Weyl 
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relations. For the elements of the quantum matrices of GL,(n) with 191 = 1, a similar 
solution using the Heisenberg-Weyl relations is possible (Floratos 1989, Weyers 1990, 
Chakrabarti and Jagannathan 1991a). Here, we extend this solution to the case of 
GL,,(2). AS noted by Floratos (1990), irreducible matrix representations do not 
facilitate the embedding of such a set of continuous numerical parameters in the 
non-commutative space as desired. We note that in this case a lattice of integer 
parameters can be introduced in such representations. 

(iij Tne naiurai generaiization in the case of supergroups, corresponding to a singie 
deformation parameter, is the quantum group GL,(111) (Schwenk et al 1990, Schmidke 
et a1 1990), i.e. the deformation of the supergroup of 2 x  2 non-singular matrices with 
two bosonic and two fermionic elements. The tools of the quantum inverse-scattering 
method may be developed in this case as there exists a universal R-matrix satisfying 
a &-graded Yang-Baxter equation. An R-matrix satisfying the spectral parameter- 

,De associaie~ 
(Kauffman and Saleur 1990) with a picture of free fermions 'propagating' on the knot 
diagram and thereby realizing the Alexander-Conway polynomial as a Berezin integral. 
Here, we study the representation theory of the two-parameter quantum supergroup 
GLpJlll) defined by the endomorphisms acting on a pair of distinct superplanes 
(Manin 1989). The corresponding R-matrix which depends on the two deformation 
parameters and sa:i&es B Z,-graded Yang-Baxtir zqi iat ion is excibited. %,e:e e-ists 
a comultiplication rule similar to the one for GL,( 111). It is shown that, with a suitable 
choice of variables, the bilinear relations satisfied by the elements of the defining 2 x 2 
matrix representation of C L , , (  111) can again be translated into the Heisenberg-Weyl 
form and, consequently, their representations may be analysed in the same way as for 
G L , ,  (2). 

anchors on a 'factorization' procedure derived from earlier studies (Weyl 1950, 
Schwinger 1960, Ramakrishnan 1971,1972, Jagannathan and Ranganathan 1974,1975, 
Ramakrishnan and Jagannathan 1976, Jagannathan 1985) on generalized Clifford 
algebras for which the generators obey exactly the same relations as ( 1 . 1 )  apart from 
being non-singular. These algebras arise in the theory of projective representations of 
Abelian groups and have been studied in detail from the points of view of mathematical 
structure (see Morinaga and Nono 1952, Yamazaki 1964, Popovici and Gheorghe 1966, 
Morris 1967, 1973, Backhouse and Bradley 1972, and references therein) and physical 
applications (Weyll950, Schwinger 1960, Ramakrishnan 1972, Boon 1972, Jagannathan 
and Ranganathan 1976, Santhanam 1977, Jagannathan 1983, Baxter 1989, and referen- 
ces therein). In this context we outline briefly the work of Floratos (1990) on the 
representations of Manin's non-commutative coordinate space A:'' using our approach. 

The plan of the paper is as follows. In sections 2 and 3 we discuss, in sequence, 
the Manin construction and the technique of deriving explicitly the realizations of 
GL,,(2) using the Heisenberg-Weyl relations. A parallel analysis is repeated in the 
same order for CL,,( 11 1 )  in sections 4 and 5.  In  section 6 we analyse the representation 
of the Manin quantum plane and concluding remarks follow in section 7. 

&pendeiit Yai,g-Baxier eqlraiion may be obtained and is 

(iii) 0.r treztme"! of !he rPprPsentztior? nf the e!ements of the :!!ankm ml!rires 

2. The Manin construction for GL,,,,(2) 

Following Demidov et al (1990) we first summarize the construction of GL,,(2) (for 
pq # -1 ,  as we assume below) viewed as endomorphisms of a pair of distinct quadratic 
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spaces, 

A ~ " = K ( X , ~ ) / ( X ~ - ~ - ' ~ X )  (2.1) 

A:012 = K('& 17)/(c2, T 2 ,  517+415). 

and the dual space 

(2.2) 

The new feature is that the quantum space Ailo is generally distinct from Azl". Now, 
consider a matrix 

which effects the simultaneous linear transformations 

M :  Agio 
M :  AZ0l2+ A*012 

9 

(2.4) 

The elements of M are assumed tn commute with the coordinates x, y, 5 and 7. The 
endomorphisms (2.4) impose the following commutation relations on the elements 
of M ;  

ab = q-'ba cd = y-'dc ac=p- ' ca  bd = p-'db 

bc = p-lqcb 
(2.5) 

[a, d ] =  (p-'-  q)cb. 

The quantum determinant 

D ( M ) = a d - q - ' b c  

is not central, but satisfies the commutation relations 

aD=Da bD =p-'yDb cD = pq-' Dc dD = Dd. (2.7) 

The comultiplication rule for the matrix representation of GL,, (2) ,  (2.3), preserves 
the commutation relations (2.5) and may be stated as follows: if M, M ' E G L ~ , , , ( ~ )  and 
the elements of M painvise commute with the elements of M'  then M M ' =  M " E  
GL,,(2). The quantum determinant follows the rule 

D ( M " )  = D ( M ) D ( M ' ) .  (2.8) 

Using the quantum determinant, the left and the right inverses may be defined as 

and 

(2.10) 

respectively, such that ME'M = I and MM;' = I. As a consequence of the commutation 
relations (2.7) it follows that 

M-1- - M -  - M-',say+ M - ' E G L ~ - ~ , ~ - ~ ( Z ) .  (2.11) 
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The commutation relations (2.5) mav be interpreted as the analogue of the 
~ ~, 

symplectic conditions for G L , , ( 2 ) .  To this 

.=( -9-1/2 O 9'12) 0 

such that 

" q  2 = - r  _. 
Then, the commutation relations (2 .5 )  can 

nd, define 

(2.12) 

(?.!?) 

D stated equivalently as 

M E , M ~  = E,D( M )  M T ~ , M  = & , D ( M )  (2.14) 

For any integer n it is easily seen that if M E G L ~ , ~ ( ~ )  then M " E G L ~ " , ~ " ( ~ ) .  This 
representing the analogue of the symplectic conditions for G L , , ( 2 ) .  

may be shown as follows. Let 

M " = ( Z :  k) (2.15) 

with the quantum determinant 

4; = and5 - q-"h,c., (2:Ih) 

For all m, n E Z  the following relations hold: 

a.6, - 9-"b,,a, = -9-"'b,_, D, 

a ", c -p-"c ", a =-p-"+"D m c "-m b,d, -p-"d,,b, =p-"D,b.-, 

end, - q-"d,c, = c.-,D, 

(2.17) 
p"b.c, = 9"c.b, 

and, -p-"c.b, = a._,D, 

Equations (2.17) can be proved by a double induction procedure: first an induction 
in n with m = 1 and then an induction in m with fixed n. In the limiting case p = 9, 
(2.17) agree with the corresponding equations of Vokos ef a l ( l990) .  For the case n = m 
with a o = d o = l  and b,=c,=O, (2.17) reduce to 

and, -p-nq-mdna,  = a._,D, -p-"q-"'d,-,D, 

d.0, -p"b.c, = D,d,-, 0, = Dm. 

a.b, - 9-"b.o, = 0 

a,c. -p-'cna, = 0 

C.d. - q7d,,cn = 0 

b,d, -p-"d,bn = 0 
(2.18) 

p"b,c,-q"c.b.=O [a., & I  = (9 -n  -p")b.c. 

andn -p-nc,b, = D, d,a. -p"b,,c, = D, 

proving the assertion that M" t GLpn,,n(2) for any n E Z. 

by an R-matrix condition for the quantum group G L , , ( 2 ) ,  namely 
The bilinearproduct relations (2 .5)  may also be understood as the relations dictated 

Ri, id&, Mk, j ,  Mky, = Mt2k2Mj8 k ,  Rk, k2.11j, (2.19) 

where the R-matrix is given by (Demidov et a/ 1990) 

(2.20) 
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with (ili2) and (k,k:) labelling the rows and columns, respectively. The R-matrix is a 
linear transformation acting on  a direct product space Vm2 and satisfies the Yang- 
Baxter equation 

R Chakrabarti and R' Jagannatfian 

R:,R,,Rx= &3R:,Rn (2.21) 

as a sufficient condition for associativity; the notation R,, denotes an operator acting 
on a triple tensor product of vector spaces V,@ V,O V, such that its action on V,@ V, 
13 U C D C l l U C U  "J U l C  ..-1,,au,* auu L L J  P ~ L I U I I  U11 *, IFUUCCiS L U  ,,,c ,or;r,nry. :- ,4--,,ALOA L.. *La D --*Ar :+a - " *CA-  -- TI 1- tL- :A--.:... 

3. On the representations of the elements of GL,,,(Z) matrices 

As already mentioned in the introduction, to get a concrete realization of the differential 
calculus on  quantum matrices one may embed a set of continuous numerical parameters 
in the representation consistent with the commutation relations obeyed by the matrix 
elements. To show how this can be done in the case of GL,,(2)  we extend the earlier 
work on GL,(n) in.this regard (Floratos 1989, Weyers 1990, Chakrabarti and 
Jagannathan 1991a). 

Let us choose 

m , = b  m 2 = c  m , = d  m4=D(M) (3.1) 

a = (D + q-'bc)d 

and write 

(3.2) 
assuming that d-' exists. Then from (2.5) and (2.7) it follows that ( m A ) =  
(m,, m2, m3, m4) satisfy the bilinear product relations of the Heisenberg-Weyl form 
ii.i j for unimoduiar vaiues of p and q. Taking, in generai, 

P = exp(ix) q = exp(iA) OSx,  A <271 (3.3) 

mAmB = exp(i4AB)mBmA 4 B A  = -@AB (3.4) 

we have 

where the antisymmetric matrix [+ae] = @: say, is given by 

with ,y # A, det @ # 0. Now, following Weyl (1950), one can write a unitary realization 
of ( m A )  as 

where- -* denotes -'up to a, constant multiplicative (normalization) factor', 
(Q', Q:, Q;, 0.) = ( P ; ,  R; R1 x2j are such that 

/ o  1 0 o\ 

(3.7) 

\ o  0 -1 o/ 
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and U = [uAB]  is any real matrix satisfying the relation 

@ = UEUT. 

In the present case a solution for U, say U"', is given by 

(3.8) 

(3.10) 

0 

as can be checked easily. Consequently, taking [uas] = U = U''' in (3.6) we get a 
realization of ( m A )  in terms of the quantum mechanical phase space operators: 

m ,  - exp{i[(x-A)g,g, + X ~ I  + g , ( ~ ~ - h ~ ) ' ~ ~ f i ~ ] }  

m2-  exp{i[(x - A)u2@, + Ak, + r 2 ( x 2 - A 2 ) ' / 2 ~ 2 ] }  

m, - exp(iP,) 

m,-exp{i[( 1 +XU, - A u 2 ) f i ,  + ( X ~ - A ~ ) " ~ ~ ~ ] }  

X U ~ - A U ~ = ~ .  

If S = [sAB] is any 4 x 4 real matrix belonging to thesymplectic group Sp(4, R), i.e. 
.YES'= E, then the linearAcanpnical tJansformation (Qk = XiTl s4&$ IA= 1,2 ,3 ,4)  
provides an equivalent (Pi, Xi, P; ,  Xi) which can replace ( P I ,  X,, P2,  X2) ,  respec- 
tively, in (3.10). In other words, one can have a continuous set of U-matrices ( U =  
U'''Sl S E Sp(4, R)) providing the desired realizations of (m,)  through (3.6) indepen- 
dent of the actual representation of 6 s .  Thus, the above (boson) realization of (m,) 
(or the elements of the GL,,(2) matrix) through (3 .1)  and (3.2) with the facility to 
vary continuously a set of real parameters consistent with the prescribed commutation 
relations demonstrates how one may implement the formalism of differential calculus 
in the non-commutative space of the elements of the GLp,,(2) matrix. 

In the context of a similar realization of the Manin plane Ai", Floratos (1990) has 
noted that when 9 is a root of unity the irreducible representations are given by 
finite-dimensional matrices and it is not possible to embed in the above manner any 
set of continuous parameters consistent with the required commutation rel:tions. Here 
also, we note that the above realization of GL,,(2) in terms of the (2, P) operators 
is, in general, not irreducible with the matrix @ being fixed for a given set of values 
for (p, q). It turns out that if we want to restrict ourselves to irreducible representations 
then it is possible to introduce only a discrete set of integer parameters in such 
representations instead of the set of continuous parameters, as in the above realization 
(3.10). To this end we shall examine the cases where (i) both p and 9 are roots of 
unity, and (ii) p and 9 are not roots of unity but are commensurate such that X / A  is 
rational. 

Let p and q be distinct roots of unity. Without loss of generality we may take 

p =exp(iZrk/N) q =exp(iZrl /N) k # I  k , I E Z N .  (3.11) 

Now, the commutation relations (3.4) become 

m,m, = z"-m,m, nBA = -nAB z = exp(iZr/N) (3.12) 
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with the antisymmetric integer matrix [nAsl = P, say, given by 

0 I -k  -k I -k  

k - l  I -k  0 

(3.13) 

Analogous to (3.6) let us write (m,) as a ‘product transform’ (Ramakrishnan and 
Jagannathan 1976) of a canonical set (P,.,): 

(3.14) 

where 

0 E l  0 

(3.15) PAPS = Z e A ~ P B I * a  [E,,,]=Z= p, ; “i 
0 0 -E2 0 

O S & l ,  E 2 < N - 1  

and [tiAB] = 6‘ is any integer matrix with entries in ZN such that 

P =  fiifi’ (mod N ) .  (3.16) 

It is easy to check that (ma) defined by (3.14)-(3.16) have the correct commutation 
relations (3.12). 

As is well known, for any antisymmetric integer matrix it is possible to have a 
decomposition of the form (3.16) with U as a unimodular integer matrix (here, 
ldet fil= 1 mod N )  (e.g., see, Newman (1972) for an explicit algorithm to compute a 
unique E and a fi for a given P of any dimension). In the present case for P as given 
in (3.13), C and a solution for fi, say fi(’), are given by 

E, = gcd(k, I )  E 2 =  (k2-12)/E1 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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In terms of the ps satisfying (3.20) ms are given by the formula 
4 

mA“ pp A = 1-4. (3.21) 
B = I  

Let us now recall that any irreducible representation of the relation 

AB = oBA o N = l  AN = B N =  1 (3.22) 

with o as a primitive Nth  root of unity, is equivalent to the unitary N-dimensional 
representation (Weyl 1950): 

0 1 0 . . .  0 
_I=[! 0 0 1 ... 0 

0 0 0 ... 1 
1 0 0 ... 0 

(3.23) 

Hence, taking 

p ,  = hN,O1 p2=gNI(wI)@ 1 

p, = 1@h, cL4= l @ g N , ( o * )  (3.24) 

in (3.21) we have the only inequivalent irreducible representation of (ma) by non- 
singular matrices, apart from the normalization factors. It may he noted that the 
irreducibility of (pa) implies the irreducibility of (ma), and vice versa since the 
transformation (pA)+(mA) is invertible: E =  k i p (  f i - ’ ) r  and fi-’ is also an integer 
matrix with unit determinant mod N. Thus, when both p and 9 are roots of unity the 
irreducible representations of (ma) by non-singular matrices are all finite-dimensional 
and hence the representation (3.6) is reducible. 

It may be noted that the introduction of a set of continuous parameters in the 
realization (3.6) is made possible by the existence of the continuous group of linear 
canonical transformations of ( oA). In the case of the finite-dimensional representation 
(3.21) the analogue is provided by the canonical product transformations of (pA): with 
v = [ u A E l ,  VABEZN, 

4 

pk- n pt;”B+pkp;=Z5+& if VEVT= ;(mod N ) .  (3.25) 

Clearly the set of such V-matrices form a finite subgroup of Sp(4,R) and in (3.21) 
one may replace 6“) by a ( f i (”V) consistent with the commutation relations for ( mA). 
Thus, when both p and 9 are roots of unity, if we want to restrict ourselves to irreducible 
representations, instead of the reducible representation (3.6), we can consider the 
elements of the GL, , (2 )  matrix only as functions of a set of integer variables E Z ~  
independent of the actual matrix representations in the construction (3.21). Of course, 
the group of similarity transformations would provide a set of continuous parameters 

E - ,  
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in any finite-dimensional representation, consistent with the algebraic relations, but it 
would be representation-dependent. 

Let us now consider the case when p = exp(iX) and 9 = exp(ih) are not roots of 
unity but X / h  is rational. Then, one can write, in general, 

q = z  k',I'EZ Z" f 1 for any N E  Z. (3.26) 

In this case the representation of (ma) in terms of (pA) follows exactly as discussed 
above with the replacement of z, k and I by z', k and 1', respectively, and taking 
ZN +Z since z' is not a root of unity. The resulting commutation relations for ( p A )  are 

(3.27) 

R Chakrabarti and R Jagannathan 

,I_ = z ,k'  

PIP2' z9eip2P, p 3 P 4 =  2'e'/14/13 

&:=gcd(k', I ')  & ; = ( k , - I ' Z ) / E ; .  

The commutation relation of the form AB = wBA where w is not a root of unity has 
been studied in detail earlier in physics literature in the context of the theory of Bloch 
electrons in an external homogeneous magnetic field. It turns out that in this case one 
has an infinite number of irreducible representations, all of infinite dimensions, and 
a representation of the form 

A-exp[i(t , ,p+t12k)] B - exp[i(t,,B + t 2 3 ) ]  
(3.28) 

ex~[ i ( t , , t ,~ -  tI2f2d1 = w 

can he decomposed into irreducible constituents in an infinite number of different 
ways (for details, see Boon 1972). Hence, in the present case ( & A ) ,  obeying (3.27), 
and (ma) have an infinite number of irreducible representations, all of infinite 
dimensions, and the (2, B )  operator realization (3.6) is decomposable into the irreduc- 
ible constituents in an infinite number of different ways. Since the ps defined by (3.27) 
admit canonical product transformations of the form (3.25) with V'E'VT=E', and 
vXB E Z, independent of the actual irreducible representation, in this case the elements 
of the GLp,,(2)-matrix can also be considered to be functions of a set of discrete 
variables E Z .  It may be noted that when both p and 9 are roots of unity the 
representation (3.6) is decomposable into the finite-dimensional irreducible com- 
ponents uniquely (Boon 1972). 

When p and q are not roots of unity and are also incommensurate (i.e. x j h  is 
irrational) then it is not possible to obtain a representation formula like (3.14) expressing 
(m,) as products of integral powers of more elementary building blocks, namely (pA) .  
It is obvious that the irreducible representations have to be infinite-dimensional in this 
case. We may conjecture that in this case too the representation (3.6) will be decompos- 
able in the same sense as discussed above for the case when p and 9 are not roots of 
unity but are commensurate. 

In the representation con$idered above (mA)  are all invertible. But the ansatz (3.1), 
(3.2) requires only d, or m,, to be invertible. This implies that when both p and 9 are 
roots of unity only w, in (3.21) is necessarily invertible. This points to the possibility 
of other representations. For example, one may take 

p,- .I:) p 3 1 W 2  pa- J y )  (3.29) *,'p - ,*3h" 
PI I 

with 

w;A'J~($ = W : l j ( j )  * " I  Jh" j = l , 2  (3.30) 
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and (J;') ,  J y ) )  commuting with (J!,", 5:)). Regarding (3.30), for each j =  1, 2, as part 
ofthe generating relations of the su(2) algebra would lead to realizations in terms of 
( X ,  P )  operators or boson creation and annihilation operators with the facility to 
embed a set of continuous parameters exactly as in the case of (3.6). The corresponding 
irreducible matrix representations can be obtained by regarding (3.30) as part of the 
generating relations of sI(2) or, more generally, s1,(2) (Roche and Arnaudon 1989). 
and the set of integer parameters that may be embedded in such representations can 
be discussed for each specific representation. it is obvious that one can discuss simiiar 
realizations also in the case when p and q are not roots of unity but are commensurate 
(now, w ,  = z"', w2 = 2"'); in contrast to the realization considered earlier where ps are 
regarded as the generators of projective representations of Abelian groups (Boon 19721, 
the representations of (3.29) and (3.30) can be finite-dimensional (Rosso 1988). 

In the limiting case p = q, the above discussion contains as a special case the earlier 
LI;SUIU UII UL,(L, (rruiarua I ~ Y ,  weyers JYW, ~rranraonru anu ~ a g a ~ m a ~ r ~ i  irria,. II. -- n r  ,"\,PI < n o n  .., 4 n n n  r.L.,...L.-:...> r . -  .__.. L._ .nn.-, 

4. The Mauin coustruction for GLp.,Jl1l) 

In this section we consider the quantum supergroup GLp,q(lll), which may be viewed 

deformation parameter has been previously studied in detail by several authors 
(Schwenk et al 1990, Schmidke el al 1990). To study GL,,,,,(l~l), the two-parameter 
extension of GLq(lll), we shall follow the approach of Manin (1989) and Demidov 
et al (1990) (see also Soni 1991). So, we consider the endomorphisms of a pair of 
quadratic spaces with a bosonic and a fermionic variable; 

11c thn c . , . . a - ~ - o l ~ . m s m  nf Cl I?\ Thn n..qnt..m ~. .m~-n-n. . -  P.1 1111\ nrith 0 ~ i n n l ~  "" ...- y y y c ' y L L y . " ~ " ~  ". U"P,4,-, .  LLV"...Y... o"F-Laa""p ...... .. "..e.' 

A$:= K ( X ,  I l ) / ( q 2 , x T - p - ' v x )  (4.1) 

and the dual space 

dL Y) / (C ' ,  CY -4y5) .  = 

Let 

(4.2) 

(4.3) 

with its elements (anti)commuting with the coordinates of AA" and At'". Then, the 
endomorphisms 

impose the following bilinear product relations among the elements of M: 

a p  = q- 'pa  a y  = p - ' y a  dP = q-'pd d y = p - ' y d  

P - Y  - 0  

The quantum superdeterminant of M may be defined as 

(4.5) 
PPY + SYP = 0 [ a , d l = ( ~ - ' - q ) ~ P .  2 -  2 -  

Sdet(M)= a d - ' - p d - ' y d - '  (4.6) 

provided d-'  exists, and is seen to commute with all the elements of M ;  therefore, 
Sdet( M) is central in character. The comultiplication rule for the matrix representation 
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of GLp.q(lll), (4.3)-(4.5), preserves the bilinear product relations (4.5) and is parallel 
to the example of GLP,,(2)'discussed earlier. The inverse of M is given by 

R Chakrabarri and R Jagannathan 

Sdet( O )  M )  
-a:?-')( S d e t i ( M )  

-d-l  

(4.7) 
-d- 'pd-l  

( d-' 
M - ' =  

= rdet? Sdet(M) O >( -a- lya- '  d- '  a-' 

where the inverse of the quantum superdeterminant is 

Sdet-'(M) = da- '+pa- ' ya - ' .  (4.8) 

From (4.6) it follows that M-l E GLp-~,9-~(l i l ) .  Computing M "  explicitly, for n EZ, it 

The bilinear product relations (4.5) may be succinctly expressed in terms of a 

(4.9) 

may 'ie &dui.& i":" EGLp",q"<iii), as in i'nr case of GL&). 

graded R-matrix condition for the quantum supergroup GL,,(  11 1): 

R~,,~,k*k,[(-l) l j L + l ) ( k  1 +'  'z)Mk,,,Mk2j2] = [(-l)''l+')(iz+k ) ' M,,k,Mj,k,lRk,x,.j,j, 

adopting the Z2 grading factor 1 (-1) for an index i corresponding to the first (second) 
row or column of a 2 x 2 matrix space. The R-matrix is given by 

(4.10) 

where (ili2) and (k ,k, )  label the rows and columns, respectively. In the limiting case 
p = y  the R-matrix in (4.10) reduces to the R-matrix corresponding to GL,(111) 
discussed by Schmidke er al (1990). The R-matrix in (4.10) satisfies the graded 
Yang-Baxter equation 

Ri,Ri,Rz= R23RnRu (4.11) 

where 

- R i .  . . a . .  
4 1 2 ) t c i ~ . j > j x j c -  lta.,2Jt wl 

RI,,,. I ,  '1~1.11111, . . . . . = (-1)((*+')((>+j*)Ri >'1.1111 . . . S. ' 212  

R,,,,. , , . . . = (-l)('lt')l'i+j?t''+J,)R. . . . S. 

(4.12) 

',1*',.,1,2J, 'l'l.13,i 't,,' 

In the Yang-Baxter equation we follow the matrix multiplication rule 

(AB) .  ~ , ~ x w , M ,  . . . . . = A . .  , , , ~ , , . k , k * k , B k , k ~ k , . j , j ~ , , '  . (4.13) 

5. On the representations of the elements of GL,JlIl) matrices 

The set of Heisenberg-Weyl variables for GL,,q(lll) may be chosen as 

P Y d Sdet(M) (5.1) 
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with the solution for the remaining element a of M given by 

a = [Sdet( M )  + pd-'yd-']d. (5 .2 )  

As already noted d-' must exist in order to define Sdet(M). To proceed further, we 
define the bosonic variables b and c such that 

P = 0b y = 0'c (5.3) 

m , = b  m 2 = c  m , = d  m4= Sdet(M). (5.4) 

where B and 0' are constant Grassman numbers. Now we consider the variables (mA): 

Then, the representation procedure for GL,,,(lJl) follows closely our analysis of 
GL,,(2) in section 3. 

As before, taking, in general, 

P = exp(ix) q = exp(iA) 0 < x, A < 271 ( 5 . 5 )  

we have for (ma) in (5.4) 

mAmS =exp(i+~,)m,m, +BA = -+AB (5.6) 

with 

For this @ with rank 2 

0 1 0 0  

and a solution for U satisfying 

@ = U&UT 

(5.7) 

(5.8) 

(5.9) 

is given by 

( x - A ) u ,  -A U, 0 

(5.10) 

XU, - Au2 = 1 

Now, from thestructure of E, in (5.8) it  is clear that (ma) can be realized in terms of 
a single pair (Q,, &=(f', X). Then with the help of (5.10) we can write down the 
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explicit representation of the elements of GLp,q(I/l) as 
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p -  eexp{i[(x-,i)w,B-A21i 

y - B' exp{i[(x - A)v2,i.-xk]} 
d -exp(i$) 

Sdet(M)- 1 

(5.11) 

with a given by (5.2). 
In the above realization (5.1 1 )  one can embed a group of continuopfeal parameters 

utilizing the invaiance 5f the Hekenberg commutation relation [X, PI = i under the 
transformations X + S , , X + S , ~ P ,  P + s ~ , X + S ~ ~ P ,  S ~ , S , , - S , ~ S ~ , = I  forming the group 
S p ( 2 ,  W )  - SLO, R). This would enable one to visualize a differential calculus on 
CL,,( 1 I1 ). 

As in the case of GL,,(2) one can easily conclude that the above realization (5.1 1) 
is, in general, reducible by considering two cases: (i) both p and y are roots of unity, 
and (ii) p and q are not roots of unity but are commensurate. In these cases the 
representations of the elements of the GLp,J1\l) matrix can be written in terms of 
( p A )  as follows: 

p -  o p ( T - E ) * , ~ z  iic - 
1 fi2 119, 

Y- I 112 $3 
d - p i  Sdet(M)- p4 

where (pa) have the commutation relations of the form 

(5.12) B'll"-"'+>/F K t i  

111112= WlLZLLl pAp8 = p 8 ~ a  otherwise. (5.13) 

Whenp and q are roots of unityasdefined in (3.11), k= k i= I, 5 = E ,  w =exp( iZw/N)  
with E =gcd(k, I) and 5, and g2 are integers €EN,, N ,  = N/(gcd(A: E ) ) ,  defined by 
M2-  15, = E  (mod N,) .  When p and y are not roots of unity but are commensurate 
then with the same parametrization as in (3.26), E= k', T= 1', i = E ' ,  w = z'?', and 
~ '=gcd(k ' ,  l'); now e, and C2 are any integers satisfying k'52-l'+l =E'. It is clear 
that regarding the matrix representations using (5.12) and (5.13) the same statements 
as for GL,,q(Z) hold; hence, the realization ( 5 . 1 1 )  is, in general, reducible. In the 
limiting case p = q, we have GL,,(lIl) and the representations in this case are obtained 
using the same formulae as above; for example, the (X,  I") operator realization (5.1 1) 
now reduces to 

p - 0 exp(-i&) 

d - exp(i@) Sdet(M)-1. 

y -  B'exp(-iAk) 
(5.14) 

6. On !he representations of A;'" and A:q" 

We shall now analyse the work of Floratos (1990) on the representation of A:" in 
terms of quantum-mechanical phase space operators, using our approach. Let the 
commutation relations of the coordinates (x,, x2, .  . . , x8)E A;'' be 

XAXS = q-'XBXn A < B  A , B = l , 2  ,..., n. (6.1) 
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Following Floratos (1990) let us seek unitary realizations of (xa) corresponding to 
unimodular value of q. Choosing q=exp(-iA) ( O S A  <2,r) ,  (6.1) can be rewritten as 

(6.2) 

Now, the @matrix, [+AB], associated with these commutation relations (6.2) may be 
written as 

o= U&UT (6.3) 

xAxB =exp(i$'AB)xBxA 

A < B  A , B = 1 , 2  ,_.. ,  n. 

+AB = -+sa = A ( 1 - 8 ~ )  

where 

forA = Z j - 1 ,  B=2j,  j =  1,2, .  . . , [n/2] 
f o r A = 2 j , B = Z j - l . j = 1 , 2  ,..., [n/2] 
otherwise 

(6.4) 
4 
0 f o r A < B  
0 f o r A = 2 j , B = 2 j - l , j = 1 , 2  ,..., [n/2] 
-A 
d 

f o r A = B =  1,2, .  . . , n 

f o r A = 2 j + k , k = 1 , 2  , . _ . ,  n - Z j , B = 2 j - l , j = l , 2  , . . . ,  [n/2] 
for A = 2 j +  k, k =  1,2, .  . . , n -2j, B = 2j, j =  1,2, .  . . , [n/2]. 

This leads to the realization 

(6.5) j = 1,2, .  . . , [n/2] 
J - 1  

( k = l  
x2,=exp i d  1 (gk-Fk)+% 

if n = 2 r +  1 

apart from unimodular multiplicative constants; here, [n/2] stands for the integral 
part of 1112. The linear canonica! tfansformations of the 2[n/2] operators 
((kk,fi~)l[k~,fi,]=i~~,, [*k,g,]=[Pk,P,]=O, k , l=1 ,2  ,..., [n/2]) forming the 
group Sp(2[n/2], U%) provide a set of continuous real parameters for a concrete real- 
ization of a differential calculus on At", as is clear from the representation (6.5). This 
essentially reproduces the result of Floratos (1990) on the realization of the non- 
commutative coordinate space A;'' in terms of quantum-mechanical phase space 
operators giving an example of the way a differential calculus can be formulated in a 
non-commutative space by the introduction of continuous numerical parameters. 

Exactly parallel to theAsi!uation obtained for GL,,(2)  with p and q being 
roots of unity, the above (X, P )  operator realization of A:'" is not irreducible. With 
(pAlA=1,2,  ..., n) defined by 

p2j -Ip2j  = j = l , 2 ,  ..., [n/2] 

pApB = pnpA otherwise A , B = l , 2  ...., n 
(6.6) 
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one can write 
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X I  = 111, x2 = p2,. . 

j =  1.2,. . . , [ n / 2 ]  
j - l  

( k = l  

t 
x 2 j =  n 112k-1112k 

(6.7) 

x n =  n 1 1 ; k - I p 2 k  if n = 2 r + 1  

so that irreducible representations of ( x a )  are given in terms of the irreducible rep- 
resentation of (pA) obeying (6.6). To obtain (6.7) one has to just note that in this case 
the matrices (P, c, fi) are respectively given by (@/A, - A E )  and the same U as in (6.4). 
The irreducible representations of (p4) are of the form 

p2j-l - 10 1 0 .  . .0 10 h O  1 0 .  . .0 1 0  1 

pLZj- 1010..  . 0 1 0 g 0 1 0 . .  .@I01 (6.8) 
fo r j=1 ,2 ,  ...,[ n / 2 ]  
Thus, when h/Z.rr is a rational number one has only finite-dimensional irreducible 

of these irreducible representations. When h / 2 ~  is an irrational number then, as 
mentioned already, one would have an infinite number of irreducible representations 
for ( x A ) ,  all of infinite dimensions, and the representation (6 .5)  is reducible into these 
irreducible components but in an infinite number of different ways. If we want t o  
restrict ourselves to only the irreducible representations provided by (6.7) and (6.8) 
then one can embed only a set of integer parameters in such a realization of (x.); the 
set of integer parameters would correspond to an integer subgroup of Sp(2[n/2],iW) 
depending on the particular value of q. 

The representation of the dual space A:"" with the coordinates (5.1; = 1 , 2 , .  . . , n) 
satisfying the relations (ei& + qcjc; = 0, i < j ,  e:= e:= 0, i, j = 1,2, . . . , n )  follows closely 
the above analysis once the Grassman numbers are introduced as done above in the 
discussion of G L n ( 1 ! l ) .  I.. . To this end one can take e.= $yj with O j O k + O k O , = O  so that 
(y,) are bosonic coordinates obeying yjyk - qykyj = 0, j < k, j ,  k = 1, 2 , .  . . , n. 

It is obvious that our approach to the representation of the Heisenberg-Weyl-type 
relations (1.1) can be used to obtain the realizations of more general non-commutative 
spaces with the coordinates ( x A )  obeying the relations of the form xAxs = qAsxBxA. 
Finally, it may be noted that the construction of ( x A )  as above is a straightforward 
generalization of the process for q = -1 found in Clifford's fundamental paper (1878) 
on the application of Grassman's extensive algebra; there, Clifford shows that his 
(2m+l)-way geometric algebra, currently known as the Clifford algebra with ( 2 m  + 1) 
generators, is a compound of m quaternion algebras, the units of which are commutative 
with one another. 

k=l 

W. - 1 for n = 2 r + l  hg =exp(iA)gh. 

representationn for (XA) znd the rea!izatiol? (6 .5 )  is h!!y redccib!. !!niq!!e!y 2s the S C E  

i. Conciusion 

Aquantum group may be defined as an endomorphism of an associated non-commuta- 
tive coordinate space (Manin 1988, 1989). It turns out that one can have a formalism 
of differential calculus (Wess and Zumino 1990) on such a coordinate space which is 
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fully covariant under the action of the corresponding quantum group. The application 
of non-commutative differential calculus on the defining matrix representation of a 
quantum group (Woronowicz 1987) leads to a deformation of the corresponding Lie 
algebra. Floratos (1990) studied the realization of the Manin quantum plane A"" with 
141 = 1, in terms of the unitary phase space operators of quantum mechanics utilizing 
the Heisenberg- Weyl structure of the defining commutation relations of the non- 
commutative coordinates in A:1o. For a generic unimodular q such a representation 
admits the embedding of a set of continuous real parameters corresponding to the 
symplectic group Sp(2[n/2], R) so that the scheme of a differential calculus on such 
a non-commutative space can be easily understood. It was, however, noted that if we 
restrict ourselves to irreducible finite-dimensional representations, e.g. when q is a 
primitive Nth  root of unity, there is no such freedom to facilitate the formulation of 
a 'differential' calculus in AGIO. We note that for a similar understanding of the 
differential calculus in the non-commutative space of the quantum matrices, the 
formulation of the representation of the elements of the quantum matrices in terms of 
the Heisenberg-Weyl type variables can be used; such a formalism exists already for 
GL,(n) (Floratos 1989, Weyers 1990, Chakrabarti and Jagannathan 1991a). In this 
paper, we extend this formalism to the quantum group GL,,,(2) and its superanalogue 

For GL,,(2), it is found that one can represent the zlements of the quantum matrix 
inAtefms of exponentials of two mutually commuting pairs of canonically conjugate 
( X ,  P )  operators. This allows the freedom of introducing in the realization a set of 
continuous real parameters labelled by the elements of thesymplectic group Sp(4, W). 
For GLp,q(lll) a similar realization requires only a single (X, P )  pair and, correspond- 
ingly, one has in this representation a set of continuous real parameters provided by 
the elements of Sp(2, R) - SL(2, Iw). These operator representations are not irreducible; 
when both p and q are roots of unity these representations are uniqueiy reducible into 
irreducible components of finite dimensions and when p and q are not roots of unity 
the irreducible representations are infinite-dimensional and the reduction of the 
operator realizations is not unique. But, if we restrict ourselves to the irreducible 
representations it is possible only to introduce a set of integer parameters provided by 
certain integer subgroups of the symplectic groups depending on p and q ;  with such 
irreduciiiie represeniations one has oniy a 'iattice diiierentiai' caicuius on the given 
algebraic structure. 

It is noted that, unlike the elements of the Heisenberg-Weyl group o r  the generators 
of generalized Clifford algebras, all the Heisenberg-Weyl-type variables associated 
with the elements of a quantum matrix are not necessarily invertible. This leads to the 
possibility of several inequivalent finite-dimensional representations of the elements 
^ P  .L̂  ^_.^^I..... --.- :"-- ̂C P., I,\ "..A P., /,I,\ n..- ""I *I..̂  I.-..- ,..."-"...- 
U 1  L U G  qU"nLU"1 1 z 1 a U l r r D  U1 "-p,q,', Yl l"  urp,q\'l',. "lib ..'ALL - 2 0 "  L l P l b  " p L ' a L " 1  

realizations of this type with the facility to introduce a set of continuous parameters; 
but, here again, the finite-dimensional representations admit only integer parameters. 
Finally, we have analysed the work of Floratos (1990) on the representations of the 
Manin hyperplane, using the Heisenberg-Weyl relations, within the framework of our 
method of realization of such relations. Essentially, following Floratos (1990) we have 
~ . Y . L " ' "  n m ~ r i A d  P I I ~ ~ P E  -_ -... r.-" nf -. remlimtinnq .--..I-..--. I fnr Gr.p,q(z) -- and GLD,q( l ! l )  which, albeit r&c&!e, 
contain sets of continuous real parameters enabling one to visualize a formalism of 
differential calculus on the corresponding non-commutative spaces; for GL,(n) such 
realizations are obtainable from earlier work (Floratos 1989, Weyers 1990, Chakrabarti 
and Jagannathan 1991a). 

'l .'. 

G L , ,  (11 1 ). 
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